Install NVIDIA GPU driver, CUDA Toolkit, NVIDIA Container Toolkit on Amazon EC2 instances running Ubuntu Linux
Steps to install NVIDIA driver, CUDA Toolkit, NVIDIA Container Toolkit, and other NVIDIA software from NVIDIA repository on Ubuntu 24.04 / 22.04 (x86_64/arm64)
Overview
This article suggests how to install NVIDIA GPU driver, CUDA Toolkit, NVIDIA Container Toolkit and other NVIDIA software directly from NVIDIA repository on NVIDIA GPU EC2 instances running Ubuntu on AWS.
Note that by using this method, you agree to NVIDIA Driver License Agreement, End User License Agreement and other related license agreement. If you are doing development, you may want to register for NVIDIA Developer Program.
This article applies to Ubuntu Linux on AWS only. Similar articles are available for AL2, AL2023, RHEL/Rocky Linux and Windows.
This article install NVIDIA Tesla driver which does not support G6f instances with fractional GPUs. Refer to this article about NVIDIA GRID driver install.
Other Options
If you need AMIs preconfigured with NVIDIA GPU driver, CUDA, other NVIDIA software, and optionally PyTorch or TensorFlow framework, consider AWS Deep Learning AMIs. Refer to Release notes for DLAMIs for currently supported options, and Deep Learning graphical desktop on Ubuntu Linux with AWS Deep Learning AMI (DLAMI) for graphical desktop setup guidance.
Refer to NVIDIA drivers for your Amazon EC2 instance for NVIDIA driver install options and NVIDIA Driver Installation Guide for Tesla driver installation instructions. You can also install NVIDIA driver from Ubuntu repository.
For container workloads, consider Amazon ECS-optimized Linux AMIs and Amazon EKS optimized AMIs
Note: instructions in this article are not applicable to pre-built AMIs.
About CUDA toolkit
CUDA Toolkit is generally optional when GPU instance is used to run applications (as opposed to develop applications) as the CUDA application typically packages (by statically or dynamically linking against) the CUDA runtime and libraries needed.
System Requirements
NVIDIA CUDA supports the following platforms
- Ubuntu Linux 24.04 (x86_64 and arm64)
- Ubuntu Linux 22.04 (x86_64 and arm64)
Refer to Driver installation guide for supported kernel versions, compilers and libraries.
Prerequisites
Go to Service Quotas console of your desired Region to verify On-Demand Instance quota value of your desired instance type:
- G instance types: Running On-Demand G and VT instances
- P instance types: Running On-Demand P instances
Request quota increase if the assigned value is less than vCPU count of your desired EC2 instance size. Do not proceed until your applied quota value is equal or higher than your instance type vCPU count
Prepare Ubuntu Linux
Launch a new NVIDIA GPU instance running Ubuntu Linux preferably with at least 20 GB storage and connect to the instance
Update OS, and install DKMS, kernel headers and development packages
sudo apt update
sudo apt upgrade -y
sudo apt autoremove -y
sudo apt install -y dkms linux-headers-aws linux-modules-extra-aws amazon-ec2-utils unzip gcc make libglvnd-dev pkg-config
Restart your EC2 instance if kernel is updated
sudo reboot
Add NVIDIA repository
Configure Network Repo installation
DISTRO=$(. /etc/os-release;echo $ID$VERSION_ID | sed -e 's/\.//g')
if (arch | grep -q x86); then
ARCH=x86_64
else
ARCH=sbsa
fi
cd /tmp
curl -L -O https://developer.download.nvidia.com/compute/cuda/repos/$DISTRO/$ARCH/cuda-keyring_1.1-1_all.deb
sudo apt install -y ./cuda-keyring_1.1-1_all.deb
sudo apt update
If you are installing from AWS China Region, you may be able to replace repository source from https://developer.download.nvidia.com to https://developer.download.nvidia.cn
if (ec2-metadata -z | grep cn-); then
sudo sed -i "s/nvidia\.com/nvidia\.cn/g" /etc/apt/sources.list.d/cuda-ubuntu*.list
sudo apt clean
fi
Install NVIDIA Driver
Option 1: NVIDIA repo driver
To install latest Tesla driver from NVIDIA repository
sudo apt install -y nvidia-open
sudo apt install -y nvidia-xconfig
To install a specific driver branch, e.g. R570 production
sudo apt install -y nvidia-open-570
sudo apt install -y nvidia-xconfig
The above install open-source GPU kernel module which is recommended by NVIDIA (and is different from Nouveau open-source driver). Refer to Driver Installation Guide about NVIDIA Kernel Modules and installation options.
Option 2: Ubuntu repo driver
Alternatively, pre-compiled NVIDIA modules may be available from Ubuntu repository.
sudo apt update
VERSION=$(apt-cache search "nvidia-driver" | grep "^nvidia-driver-.*-server-open" | cut -d"-" -f3 | sort -r | head -1)
sudo apt install -y linux-modules-nvidia-$VERSION-server-open-aws nvidia-headless-no-dkms-$VERSION-server-open nvidia-driver-$VERSION-server-open nvidia-utils-$VERSION-server
sudo apt install -y nvidia-settings
Verify
Restart your instance
nvidia-smi
Output should be similar to below
Sun Aug 10 03:03:55 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.65.06 Driver Version: 580.65.06 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 |
| N/A 23C P8 10W / 70W | 0MiB / 15360MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
Optional: CUDA Toolkit
To install latest CUDA Toolkit
sudo dnf install -y cuda-toolkit
To install a specific series, e.g. 12.x
sudo dnf install -y cuda-toolkit-12
To install a specific version, e.g. 12.9
sudo dnf install -y cuda-toolkit-12-9
Refer to CUDA Toolkit documentation about supported platforms and installation options.
Verify
/usr/local/cuda/bin/nvcc -V
Output should be similar to below
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Jul_16_07:30:01_PM_PDT_2025
Cuda compilation tools, release 13.0, V13.0.48
Build cuda_13.0.r13.0/compiler.36260728_0
Post-installation Actions
Refer to NVIDIA CUDA Installation Guide for Linux for post-installation actions before CUDA Toolkit can be used. For example, you may want to modify your PATH environment variable to include /usr/local/cuda/bin.
sed -i '$aexport PATH=\"\$PATH:/usr/local/cuda/bin\"' /home/ubuntu/.bashrc
. /home/ubuntu/.bashrc
For runfile installation, modify LD_LIBRARY_PATH to include /usr/local/cuda/lib
Optional: NVIDIA Container Toolkit
NVIDIA Container toolkit supports Ubuntu on both x86_64 and arm64. For arm64, use g5g.2xlarge or larger instance size as g5g.xlarge may cause failures due to the limited system memory.
To install latest NVIDIA Container Toolkit
sudo apt install -y nvidia-container-toolkit
Refer to NVIDIA Container toolkit documentation about supported platforms, prerequisites and installation options
Verify
nvidia-container-cli -V
Output should be similar to below
cli-version: 1.17.8
lib-version: 1.17.8
build date: 2025-05-30T13:47+00:00
build revision: 6eda4d76c8c5f8fc174e4abca83e513fb4dd63b0
build compiler: x86_64-linux-gnu-gcc-7 7.5.0
build platform: x86_64
build flags: -D_GNU_SOURCE -D_FORTIFY_SOURCE=2 -DNDEBUG -std=gnu11 -O2 -g -fdata-sections -ffunction-sections -fplan9-extensions -fstack-protector -fno-strict-aliasing -fvisibility=hidden -Wall -Wextra -Wcast-align -Wpointer-arith -Wmissing-prototypes -Wnonnull -Wwrite-strings -Wlogical-op -Wformat=2 -Wmissing-format-attribute -Winit-self -Wshadow -Wstrict-prototypes -Wunreachable-code -Wconversion -Wsign-conversion -Wno-unknown-warning-option -Wno-format-extra-args -Wno-gnu-alignof-expression -Wl,-zrelro -Wl,-znow -Wl,-zdefs -Wl,--gc-sections
Container engine configuration
Refer to NVIDIA Container Toolkit documentation about container engine configuration.
Install and configure Docker
To install and configure docker
sudo apt install -y docker.io
sudo usermod -aG docker ubuntu
sudo systemctl enable docker
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
Verify Docker engine configuration
To verify docker configuration
sudo docker run --rm --runtime=nvidia --gpus all public.ecr.aws/ubuntu/ubuntu:latest nvidia-smi
Output should be similar to below
Unable to find image 'public.ecr.aws/ubuntu/ubuntu:latest' locally
latest: Pulling from ubuntu/ubuntu
49383e68c87b: Pull complete
Digest: sha256:d983809d3530cab2c793f60beacd2a590889aa3cd9076dd4def9831377bb6526
Status: Downloaded newer image for public.ecr.aws/ubuntu/ubuntu:latest
Sun Aug 10 03:05:05 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.65.06 Driver Version: 580.65.06 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 |
| N/A 24C P8 13W / 70W | 0MiB / 15360MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
Install on EC2 instance at launch
To install NVIDIA driver and NVIDIA container toolkit including Docker when launching a new GPU instance with at least 20 GB storage, you can use the following as user data script.
Remove # character (except the first line) if you wish to install CUDA toolkit
#!/bin/bash
export DEBIAN_FRONTEND=noninteractive
sudo apt update
sudo apt upgrade -y
sudo apt autoremove -y
sudo apt install -y dkms linux-headers-aws linux-modules-extra-aws unzip gcc make libglvnd-dev pkg-config
DISTRO=$(. /etc/os-release;echo $ID$VERSION_ID | sed -e 's/\.//g')
if (arch | grep -q x86); then
ARCH=x86_64
else
ARCH=sbsa
fi
cd /tmp
curl -L -O https://developer.download.nvidia.com/compute/cuda/repos/$DISTRO/$ARCH/cuda-keyring_1.1-1_all.deb
sudo apt install -y ./cuda-keyring_1.1-1_all.deb
sudo apt update
sudo apt install -y nvidia-open
sudo apt install -y nvidia-xconfig
# sudo apt install -y cuda-toolkit
# sed -i '$aexport PATH=\"\$PATH:/usr/local/cuda/bin\"' /home/ubuntu/.bashrc
# . /home/ubuntu/.bashrc
sudo apt install -y docker.io
sudo usermod -aG docker ubuntu
sudo systemctl enable docker
sudo apt install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
sudo reboot
Verify
Connect to your EC2 instance.
nvidia-smi
/usr/local/cuda/bin/nvcc -V
nvidia-container-cli -V
sudo docker run --rm --runtime=nvidia --gpus all public.ecr.aws/ubuntu/ubuntu:latest nvidia-smi
View /var/log/cloud-init-output.log to troubleshoot any installation issues.
Perform post-installation actions in order to use CUDA toolkit. To verify integrity of installation, you can download, compile and run CUDA samples such as deviceQuery.
If Docker and NVIDIA container toolkit (but not CUDA toolkit) are installed and configured, you can use CUDA samples container image to validate CUDA driver.
sudo docker run --rm --runtime=nvidia --gpus all nvcr.io/nvidia/k8s/cuda-sample:devicequery
GUI (graphical desktop) remote access
If you need remote graphical desktop access, refer to Install GUI (graphical desktop) on Amazon EC2 instances running Ubuntu Linux
This article installs NVIDIA Tesla driver (also know as NVIDIA Datacenter Driver), which is intended primarily for GPU compute workloads. If configured in xorg.conf, Tesla drivers support one display of up to 2560x1600 resolution.
GRID drivers provide access to four 4K displays per GPU and are certified to provide optimal performance for professional visualization applications. Refer to GPU-accelerated graphical desktop on Ubuntu Linux with NVIDIA GRID and Amazon DCV for setup guidance.
Other software
AWS CLI
To install AWS CLI (AWS Command Line Interface) v2 through Snap
sudo snap install aws-cli --classic
Verify
aws --version
Output should be similar to below
aws-cli/2.27.53 Python/3.13.4 Linux/6.8.0-1029-aws exe/x86_64.ubuntu.24
cuDNN (CUDA Deep Neural Network library)
To install cuDNN for the latest available CUDA version.
sudo apt install -y zlib1g cudnn
Refer to cuDNN documentation about installation options and support matrix
NCCL (NVIDIA Collective Communication Library)
To install latest NCCL
sudo apt install -y libnccl2 libnccl-dev
Refer to NCCL documentation about installation options
DCGM (Data Center GPU Manager)
To install DCGM
CUDA_VERSION=$(nvidia-smi | sed -E -n 's/.*CUDA Version: ([0-9]+)[.].*/\1/p')
sudo apt-get install --yes \
--install-recommends \
datacenter-gpu-manager-4-cuda${CUDA_VERSION}
Refer to DCGM documentation for more information
Verify
dcgmi --version
Output should be similar to below
dcgmi version: 4.4.1
GDS (GPUDirect Storage)
To install NVIDIA Magnum IO GPUDirect® Storage (GDS)
sudo apt install -y nvidia-gds
To install for a specific CUDA version, e.g. 13.0
sudo apt install -y nvidia-gds-13-0
Reboot
Reboot after installation is complete
sudo reboot
Verify
To verify module
lsmod | grep nvidia_fs
Output should be similar to below
nvidia_fs 262144 0
nvidia 11481088 3 nvidia_uvm,nvidia_fs,nvidia_modeset
To verify successful installation
/usr/local/cuda/gds/tools/gdscheck -p
Output should be similar to below
GDS release version: 1.15.1.6
libcufile version: 2.12
Platform: x86_64
...
...
=========
GPU INFO:
=========
GPU index 0 NVIDIA A10G bar:1 bar size (MiB):32768 supports GDS, IOMMU State: Disabled
==============
PLATFORM INFO:
==============
IOMMU: disabled
Nvidia Driver Info Status: Supported(Nvidia Open Driver Installed)
Cuda Driver Version Installed: 13000
Platform: g5.xlarge, Arch: x86_64(Linux 6.14.0-1012-aws)
Platform verification succeeded
Refer to GDS documentation and Driver installation guide for more information
GDRCopy
Magnum IO GDRCopy packages for different CUDA versions can be installed from NVIDIA Developer download site. Alternatively, download and compile from Github
Restart your EC2 instance
sudo reboot
Verify
lsmod | grep gdr
Output should be similar to below
gdrdrv 28672 0
nvidia 14376960 7 nvidia_uvm,gdrdrv,nvidia_modeset
UFM (Unified Fabric Manager)
P6 instance requires additional configuration as per EC2 and NVIDIA documentation.
To install latest NVIDIA Unified Fabric Manager (UFM)
sudo apt install -y nvidia-fabricmanager
sudo systemctl enable nvidia-fabricmanager
To install specific version, e.g. 570
sudo apt install -y nvidia-fabricmanager-570
sudo systemctl enable nvidia-fabricmanager
Restart your EC2 instance
sudo reboot
Verify
nv-fabricmanager -v
systemctl status nvidia-fabricmanager
Output should be similar to below
Fabric Manager version is : 580.95.05
● nvidia-fabricmanager.service - NVIDIA fabric manager service
Loaded: loaded (/usr/lib/systemd/system/nvidia-fabricmanager.service; enabled; preset: enabled)
Active: active (running) since ......... UTC; 1min 4s ago
Process: 22851 ExecStart=/usr/bin/nvidia-fabricmanager-start.sh --mode start (code=exited, status=0/SUCCESS)
Main PID: 22881 (nv-fabricmanage)
Tasks: 18 (limit: 3355442)
Memory: 38.1M
CPU: 633ms
CGroup: /system.slice/nvidia-fabricmanager.service
└─22881 /usr/bin/nv-fabricmanager -c /usr/share/nvidia/nvswitch/fabricmanager.cfg
.........compute.internal nv-fabricmanager[22881]: Starting nvidia-fabricmanager.service - NVIDIA fabric manager service...
.........compute.internal nv-fabricmanager[22881]: Detected Pre-NVL5 system
.........compute.internal nv-fabricmanager[22881]: Connected to 1 node.
.........compute.internal nv-fabricmanager[22881]: Successfully configured all the available NVSwitches to route GPU NVLink traffic. NVLink Peer-to-Peer support will be enabled once the GPUs are successfully registered with the NVLink fabric.
.........compute.internal nv-fabricmanager[22881]: Started "Nvidia Fabric Manager"
.........compute.internal nv-fabricmanager[22881]: Started nvidia-fabricmanager.service - NVIDIA fabric manager service.
To view GPU fabric registration status
nvidia-smi -q -i 0 | grep -i -A 2 Fabric
Output should be similar to below after the GPU has been successfully registered
Fabric
State : Completed
Status : Success
Refer to Fabric Manager documentation for supported platforms, and any additional installation or configuration steps
- Language
- English
Relevant content
- asked 3 years ago
