Knowledge Center Monthly Newsletter - July 2025
Stay up to date with the latest from the Knowledge Center. See all new Knowledge Center articles published in the last month, and re:Post’s top contributors.
Install NVIDIA GPU driver, CUDA Toolkit, NVIDIA Container Toolkit on Amazon EC2 instances running Ubuntu Linux
Steps to install NVIDIA driver, CUDA Toolkit, NVIDIA Container Toolkit, and other NVIDIA software from NVIDIA repository on Ubuntu 24.04 / 22.04 (x86_64/arm64)
Overview
This article suggests how to install NVIDIA GPU driver, CUDA Toolkit, NVIDIA Container Toolkit and other NVIDIA software directly from NVIDIA repository on NVIDIA GPU EC2 instances running Ubuntu on AWS.
Note that by using this method, you agree to NVIDIA Driver License Agreement, End User License Agreement and other related license agreement. If you are doing development, you may want to register for NVIDIA Developer Program.
Pre-built AMIs
If you need AMIs preconfigured with NVIDIA GPU driver, CUDA, other NVIDIA software, and optionally PyTorch or TensorFlow framework, consider AWS Deep Learning AMIs. Refer to Release notes for DLAMIs for currently supported options, and Deep Learning graphical desktop on Ubuntu Linux with AWS Deep Learning AMI (DLAMI) for graphical desktop setup guidance.
For container workloads, consider Amazon ECS-optimized Linux AMIs and Amazon EKS optimized AMIs
Note: instructions in this article are not applicable to pre-built AMIs.
Custom ECS GPU-optimized AMI
If you wish to build your own custom Amazon ECS GPU-optimized AMI, install NVIDIA driver, Docker and NVIDIA container toolkit, and refer to How do I create and use custom AMIs in Amazon ECS? and Installing the Amazon ECS container agent
About CUDA toolkit
CUDA Toolkit is generally optional when GPU instance is used to run applications (as opposed to develop applications) as the CUDA application typically packages (by statically or dynamically linking against) the CUDA runtime and libraries needed.
System Requirements
NVIDIA CUDA supports the following platforms
- Ubuntu Linux 24.04 (x86_64 and arm64)
- Ubuntu Linux 22.04 (x86_64 and arm64)
Refer to Driver installation guide for supported kernel versions, compilers and libraries.
Prepare Ubuntu Linux
Launch a new NVIDIA GPU instance running Ubuntu Linux preferably with at least 20 GB storage and connect to the instance
Update OS, and install DKMS, kernel headers and development packages
sudo apt update
sudo apt upgrade -y
sudo apt autoremove -y
sudo apt install -y dkms linux-headers-aws linux-modules-extra-aws unzip gcc make libglvnd-dev pkg-config
Restart your EC2 instance if kernel is updated
Add NVIDIA repository
Configure Network Repo installation
DISTRO=$(. /etc/os-release;echo $ID$VERSION_ID | sed -e 's/\.//g')
if (arch | grep -q x86); then
ARCH=x86_64
else
ARCH=sbsa
fi
cd /tmp
curl -L -O https://developer.download.nvidia.com/compute/cuda/repos/$DISTRO/$ARCH/cuda-keyring_1.1-1_all.deb
sudo apt install -y ./cuda-keyring_1.1-1_all.deb
sudo apt update
Install NVIDIA Driver
To install latest Tesla driver
sudo apt install -y nvidia-open nvidia-xconfig
To install a specific version, e.g. 570
sudo apt install -y nvidia-open-570
The above install NVIDIA Open-source kernel module. Refer to Driver Installation Guide about NVIDIA Kernel Modules and installation options.
Verify
Restart your instance
nvidia-smi
Output should be similar to below
Sat Apr 19 02:54:25 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 |
| N/A 26C P8 13W / 70W | 1MiB / 15360MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
Optional: CUDA Toolkit
To install latest CUDA Toolkit
sudo apt install -y cuda-toolkit
To install a specific version, e.g. 12.8
sudo apt install -y cuda-toolkit-12-8
Refer to CUDA Toolkit documentation about supported platforms and installation options.
Verify
/usr/local/cuda/bin/nvcc -V
Output should be similar to below
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Fri_Feb_21_20:23:50_PST_2025
Cuda compilation tools, release 12.8, V12.8.93
Build cuda_12.8.r12.8/compiler.35583870_0
Post-installation Actions
Refer to NVIDIA CUDA Installation Guide for Linux for post-installation actions before CUDA Toolkit can be used. For example, you may want to include /usr/local/cuda/bin
to your PATH
variable as per Post-installation Actions: Mandatory Actions
Optional: NVIDIA Container Toolkit
NVIDIA Container toolkit supports Ubuntu on both x86_64 and arm64. For arm64, use g5g.2xlarge
or larger instance size as g5g.xlarge
may cause failures due to the limited system memory.
To install latest NVIDIA Container Toolkit
sudo apt install -y nvidia-container-toolkit
Refer to NVIDIA Container toolkit documentation about supported platforms, prerequisites and installation options
Verify
nvidia-container-cli -V
Output should be similar to below
cli-version: 1.17.5
lib-version: 1.17.5
build date: 2025-03-07T15:46+00:00
build revision: f23e5e55ea27b3680aef363436d4bcf7659e0bfc
build compiler: x86_64-linux-gnu-gcc-7 7.5.0
build platform: x86_64
build flags: -D_GNU_SOURCE -D_FORTIFY_SOURCE=2 -DNDEBUG -std=gnu11 -O2 -g -fdata-sections -ffunction-sections -fplan9-extensions -fstack-protector -fno-strict-aliasing -fvisibility=hidden -Wall -Wextra -Wcast-align -Wpointer-arith -Wmissing-prototypes -Wnonnull -Wwrite-strings -Wlogical-op -Wformat=2 -Wmissing-format-attribute -Winit-self -Wshadow -Wstrict-prototypes -Wunreachable-code -Wconversion -Wsign-conversion -Wno-unknown-warning-option -Wno-format-extra-args -Wno-gnu-alignof-expression -Wl,-zrelro -Wl,-znow -Wl,-zdefs -Wl,--gc-sections
Container engine configuration
Refer to NVIDIA Container Toolkit documentation about container engine configuration.
Install and configure Docker
To install and configure docker
sudo apt install -y docker.io
sudo usermod -aG docker ubuntu
sudo systemctl enable docker
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
Verify Docker engine configuration
To verify docker configuration
sudo docker run --rm --runtime=nvidia --gpus all public.ecr.aws/ubuntu/ubuntu:latest nvidia-smi
Output should be similar to below
Unable to find image 'public.ecr.aws/ubuntu/ubuntu:latest' locally
latest: Pulling from ubuntu/ubuntu
440a90d6b31c: Pull complete
Digest: sha256:53b9e8d5b40d75d40e41b8776e468b0f7713ca3604e78981be28f0ba9843a316
Status: Downloaded newer image for public.ecr.aws/ubuntu/ubuntu:latest
Sat Apr 19 02:56:02 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla T4 Off | 00000000:00:1E.0 Off | 0 |
| N/A 22C P8 9W / 70W | 1MiB / 15360MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
Install on EC2 instance at launch
To install NVIDIA driver and NVIDIA container toolkit including Docker when launching a new GPU instance with at least 20 GB storage, you can use the following as user data script. Uncomment line ending with cuda-toolkit if you want to install CUDA toolkit.
#!/bin/bash
export DEBIAN_FRONTEND=noninteractive
sudo apt update
sudo apt upgrade -y
sudo apt autoremove -y
sudo apt install -y dkms linux-headers-aws linux-modules-extra-aws unzip gcc make libglvnd-dev pkg-config
DISTRO=$(. /etc/os-release;echo $ID$VERSION_ID | sed -e 's/\.//g')
if (arch | grep -q x86); then
ARCH=x86_64
else
ARCH=sbsa
fi
cd /tmp
curl -L -O https://developer.download.nvidia.com/compute/cuda/repos/$DISTRO/$ARCH/cuda-keyring_1.1-1_all.deb
sudo apt install -y ./cuda-keyring_1.1-1_all.deb
sudo apt update
sudo apt install -y nvidia-open nvidia-xconfig
# sudo apt install -y cuda-toolkit
sudo apt install -y docker.io
sudo usermod -aG docker ubuntu
sudo systemctl enable docker
sudo apt install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
sudo reboot
Verify
Connect to your EC2 instance.
nvidia-smi
/usr/local/cuda/bin/nvcc -V
nvidia-container-cli -V
sudo docker run --rm --runtime=nvidia --gpus all public.ecr.aws/ubuntu/ubuntu:latest nvidia-smi
View /var/log/cloud-init-output.log
to troubleshoot any installation issues.
Perform post-installation actions in order to use CUDA toolkit. To verify integrity of installation, you can download, compile and run CUDA samples such as deviceQuery.
If Docker and NVIDIA container toolkit (but not CUDA toolkit) are installed and configured, you can use CUDA samples container image to validate CUDA driver.
sudo docker run --rm --runtime=nvidia --gpus all nvcr.io/nvidia/k8s/cuda-sample:devicequery
GUI (graphical desktop) remote access
If you need remote graphical desktop access, refer to Install GUI (graphical desktop) on Amazon EC2 instances running Ubuntu Linux
Note that this article installs NVIDIA Tesla driver (also know as NVIDIA Datacenter Driver), which is intended primarily for GPU compute workloads. If configured in xorg.conf
, Tesla drivers support one display of up to 2560x1600 resolution.
GRID drivers provide access to four 4K displays per GPU and are certified to provide optimal performance for professional visualization applications. AMIs preconfigured with GRID drivers are available from AWS Marketplace. You can also consider using amazon-ec2-nice-dcv-samples CloudFormation templates to provision your own EC2 instances with either NVIDIA Tesla or GRID driver, Docker with NVIDIA Container Toolkit, graphical desktop environment and Amazon DCV remote display protocol server.
Other software
AWS CLI
To install AWS CLI (AWS Command Line Interface) v2 through Snap
sudo snap install aws-cli --classic
Verify
aws --version
Output should be similar to below
aws-cli/2.26.5 Python/3.13.2 Linux/6.8.0-1027-aws exe/x86_64.ubuntu.24
cuDNN (CUDA Deep Neural Network library)
To install cuDNN for the latest available CUDA version.
sudo apt install -y zlib1g cudnn
Refer to cuDNN documentation about installation options and support matrix
NCCL (NVIDIA Collective Communication Library)
To install latest NCCL
sudo apt install -y libnccl2 libnccl-dev
Refer to NCCL documentation about installation options
DCGM (NVIDIA Data Center GPU Manager)
To install latest DCGM
sudo apt install -y datacenter-gpu-manager
Refer to DCGM documentation for more information
Verify
dcgmi -v
Output should be similar to below
Version : 3.3.8
Build ID : 43
Build Date : 2024-09-03
Build Type : Release
Commit ID : be8d66b4318e1d5d6e31b67759dc924d1bc18681
Branch Name : rel_dcgm_3_3
CPU Arch : aarch64
Build Platform : Linux 4.15.0-180-generic #189-Ubuntu SMP Wed May 18 14:13:57 UTC 2022 x86_64
CRC : 93724fdcffc34a2656865a161c2d79df
NVIDIA GPUDirect Storage
To install NVIDIA Magnum IO GPUDirect® Storage (GDS) and libcufile
sudo apt install -y nvidia-gds
To install GDS only
sudo apt install -y nvidia-fs
Reboot
Reboot after installation is complete
sudo reboot
Verify
To verify installation
lsmod | grep nvidia_fs
Output should be similar to below
nvidia_fs 262144 0
nvidia 11481088 3 nvidia_uvm,nvidia_fs,nvidia_modeset
If nvidia-gds
meta-package is installed
/usr/local/cuda/gds/tools/gdscheck -p
Output should be similar to below
GDS release version: 1.14.0.30
libcufile version: 2.12
Platform: x86_64
...
...
==============
PLATFORM INFO:
==============
IOMMU: disabled
Nvidia Driver Info Status: Supported(Nvidia Open Driver Installed)
Cuda Driver Version Installed: 12090
Platform: g4dn.xlarge, Arch: x86_64(Linux 6.8.0-1030-aws)
Platform verification succeeded
Refer to GDS documentation and Driver installation guide for more information
Fabric Manager
To install latest Fabric Manager and driver
sudo apt install -y cuda-drivers-fabricmanager
To install specific version, e.g. 565
sudo apt install -y cuda-drivers-fabricmanager-565
Refer to Fabric Manager documentation for supported platforms and installation options
Verify
nv-fabricmanager -v
Output should be similar to below
Fabric Manager version is : 565.57.01
- Language
- English
Relevant content
- asked 2 years ago