Amazon Rekognition Custom Labels 的假定阈值如何计算?

0

【以下的问题经过翻译处理】 在Amazon Rekognition控制台中,我可以在模型评估摘要的Per label performance部分看到一个Assumed threshold指标(假定阈值)。这些指标是如何计算的呢?

当我收集测试数据集中给定类别的所有计算的置信度水平时,我可以看到我的KO标签的最小置信度水平为0.87,而OK标签的最小置信度水平约为0.30。这里是否有一个启发式算法进行处理呢(例如,观察到一个类的最小置信度水平的90%?),或者是假定阈值背后有一个精确的数学定义?

另外,是否可以使用Amazon Rekognition Custom Labels API以编程方式获取假定阈值呢?

profile picture
EXPERTE
gefragt vor 9 Monaten61 Aufrufe
1 Antwort
0

【以下的回答经过翻译处理】 每个标签的假定阈值是预测被计为真阳性或假阳性的值之上的数值。该度量基于模型训练期间测试数据集上实现的最佳F1得分进行计算。有关更多信息,请参阅Rekognition自定义标签指南中的假定阈值部分。

要以编程方式获取假定阈值,请使用Rekognition SDK。假定阈值列在汇总文件输出中。

profile picture
EXPERTE
beantwortet vor 9 Monaten

Du bist nicht angemeldet. Anmelden um eine Antwort zu veröffentlichen.

Eine gute Antwort beantwortet die Frage klar, gibt konstruktives Feedback und fördert die berufliche Weiterentwicklung des Fragenstellers.

Richtlinien für die Beantwortung von Fragen