passing a numpy array to predict_fn when making inference for xgboost model

0

I have a model that's trained locally and deployed to SageMaker to make inferences / invoke endpoint. When I try to make predictions, I get the following exception.

raise ValueError('Input numpy.ndarray must be 2 dimensional')
ValueError: Input numpy.ndarray must be 2 dimensional
    

My model is a xgboost model with some pre-processing (variable encoding) and hyper-parameter tuning. Here's what model object looks like:

XGBRegressor(colsample_bytree=xxx, gamma=xxx,
             learning_rate=xxx, max_depth=x, n_estimators=xxx,
             subsample=xxx)

My test data is a string of float values which is turned into an array as the data must be passed as numpy array.

testdata = [........., 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 2000, 200, 85, 412412, 123, 41, 552, 50000, 512, 0.1, 10.0, 2.0, 0.05]

I have tried to reshape the numpy array from 1d to 2d, however, that doesn't work as the number of features between test data and trained model do not match.

My question is how do I pass a numpy array same as the length of # of features in trained model? I am able to make predictions by passing test data as a list locally.

More info on inference script here: https://github.com/aws-samples/amazon-sagemaker-local-mode/blob/main/xgboost_script_mode_local_training_and_serving/code/inference.py

Traceback (most recent call last):
File "/miniconda3/lib/python3.6/site-packages/sagemaker_containers/_functions.py", line 93, in wrapper
return fn(*args, **kwargs)
File "/opt/ml/code/inference.py", line 75, in predict_fn
prediction = model.predict(input_data)
File "/miniconda3/lib/python3.6/site-packages/xgboost/sklearn.py", line 448, in predict
test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
File "/miniconda3/lib/python3.6/site-packages/xgboost/core.py", line 404, in __init__
self._init_from_npy2d(data, missing, nthread)
File "/miniconda3/lib/python3.6/site-packages/xgboost/core.py", line 474, in _init_from_npy2d
raise ValueError('Input numpy.ndarray must be 2 dimensional')
ValueError: Input numpy.ndarray must be 2 dimensional
  • I see you say reshaping "doesn't work as the number of features between test data and trained model do not match" but don't quite understand this? Your input dimensionality for inference should be the same as for training right? And at inference time a leading 'batch' dimension would be expected for efficiently processing multiple samples at once?

preguntada hace 3 años1915 visualizaciones
2 Respuestas
0

Try converting your list to a numpy 2d array like so:

a = np.array([1, 2, 3])

and replace [1, 2, 3] with your list.

profile pictureAWS
EXPERTO
respondido hace 3 años
0

XGBoost, similar to scikit-learn, expects X as 2D data (n_samples, n_features). In order to predict one sample, you need to reshape your list or feature vector to a 2D array.

import numpy as np

lst = [1, 2, 3]
lst_reshaped = np.array(lst).reshape((1,-1))
clf.predict(lst_reshaped)
AWS
Zmnako
respondido hace 3 años

No has iniciado sesión. Iniciar sesión para publicar una respuesta.

Una buena respuesta responde claramente a la pregunta, proporciona comentarios constructivos y fomenta el crecimiento profesional en la persona que hace la pregunta.

Pautas para responder preguntas