How to access model.tar file before sagemaker uploads it to the output path?

0

I have a training step (sample code below) in my sagemaker pipeline. once the training is done, anything inside the /opt/ml/model file is zipped up into model.tar file and sagemaker uploads it to an s3 location. can one get access this model.tar file before sagemaker uploads it to the s3 bucket. say from my training step, i wanted to access model.tar file , once the training is done and before sagemaker uploads it to the s3 output location . is it saved locally in the training instance , before uploading it to the s3 location ? if this is not possible, can i define another processing step to run after the trainign step , to download this model, wherever sagemaker saved it ( s3 uri) . to do this, can i define a processing step, such that if i give it a s3 location of the model, sagemaker will automatically download the model , or do i need to write code to download the model?


from sagemaker.estimator import Estimator
from sagemaker.inputs import TrainingInput

xgb_train = Estimator(
    image_uri="some_uri",
    instance_type=instance_type,
    instance_count=1,
    output_path=model_path,
    role=role,
    sagemaker_session=pipeline_session,
)

#training code 
train_args = xgb_train.fit(
    inputs={
        "train": TrainingInput(
            s3_data=step_process.properties.ProcessingOutputConfig.Outputs["train"].S3Output.S3Uri,
            content_type="text/csv",
        ),
        "validation": TrainingInput(
            s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                "validation"
            ].S3Output.S3Uri,
            content_type="text/csv",
        ),
    }
)

  • Can you share what you are planning to do once you access the tar file? You can write a script to download the S3 model in a processing step, but it will download it to the processing instance, which is also ephemeral.

질문됨 일 년 전318회 조회
1개 답변
0

You can try to do something like this or copy object as the download may happen on training instance

s3 = boto3.client('s3') s3.download_file('BUCKET_NAME', 'OBJECT_NAME', 'FILE_NAME')

profile pictureAWS
전문가
답변함 일 년 전

로그인하지 않았습니다. 로그인해야 답변을 게시할 수 있습니다.

좋은 답변은 질문에 명확하게 답하고 건설적인 피드백을 제공하며 질문자의 전문적인 성장을 장려합니다.

질문 답변하기에 대한 가이드라인

관련 콘텐츠