EMRFS and S3 503 slow down responses

0

I've been seeing the following exception from emrfs using emr 6.5.0

Caused by: com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.model.AmazonS3Exception: Slow Down (Service: Amazon S3; Status Code: 503; Error Code: 503 Slow Down; Request ID: XXX; S3 Extended Request ID: XXX; Proxy: null), S3 Extended Request ID: XXX
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleErrorResponse(AmazonHttpClient.java:1862)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.handleServiceErrorResponse(AmazonHttpClient.java:1415)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeOneRequest(AmazonHttpClient.java:1384)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeHelper(AmazonHttpClient.java:1154)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.doExecute(AmazonHttpClient.java:811)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.executeWithTimer(AmazonHttpClient.java:779)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.execute(AmazonHttpClient.java:753)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutor.access$500(AmazonHttpClient.java:713)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient$RequestExecutionBuilderImpl.execute(AmazonHttpClient.java:695)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:559)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:539)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:5445)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:5392)
        at com.amazon.ws.emr.hadoop.fs.shaded.com.amazonaws.services.s3.AmazonS3Client.getObjectMetadata(AmazonS3Client.java:1368)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.call.GetObjectMetadataCall.perform(GetObjectMetadataCall.java:26)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.call.GetObjectMetadataCall.perform(GetObjectMetadataCall.java:12)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.executor.GlobalS3Executor$CallPerformer.call(GlobalS3Executor.java:108)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.executor.GlobalS3Executor.execute(GlobalS3Executor.java:135)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.invoke(AmazonS3LiteClient.java:191)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.invoke(AmazonS3LiteClient.java:186)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.AmazonS3LiteClient.getObjectMetadata(AmazonS3LiteClient.java:96)
        at com.amazon.ws.emr.hadoop.fs.s3.lite.AbstractAmazonS3Lite.getObjectMetadata(AbstractAmazonS3Lite.java:43)
        at com.amazon.ws.emr.hadoop.fs.s3n.Jets3tNativeFileSystemStore.getFileMetadataFromCacheOrS3(Jets3tNativeFileSystemStore.java:592)
        at com.amazon.ws.emr.hadoop.fs.s3n.Jets3tNativeFileSystemStore.retrieveMetadata(Jets3tNativeFileSystemStore.java:318)
        at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.getFileStatus(S3NativeFileSystem.java:509)
        at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.getFileStatus(EmrFileSystem.java:694)
        at org.apache.spark.sql.execution.datasources.BasicWriteTaskStatsTracker.getFileSize(BasicWriteStatsTracker.scala:70)
        at org.apache.spark.sql.execution.datasources.BasicWriteTaskStatsTracker.$anonfun$statCurrentFile$1(BasicWriteStatsTracker.scala:96)
        at org.apache.spark.sql.execution.datasources.BasicWriteTaskStatsTracker.$anonfun$statCurrentFile$1$adapted(BasicWriteStatsTracker.scala:95)

My spark application sets the following for fs.s3.:

    hadoopConfiguration.set("fs.s3.maxConnections", "2")
    hadoopConfiguration.set("fs.s3.maxRetries", "120")
    hadoopConfiguration.set("fs.s3.retryPeriodSeconds", "1")
    hadoopConfiguration.set("fs.s3.buckets.create.enabled", "false")

The maxRetries is obviously crazy large just to see if it had any impact on this issue (answer: no).

Is there an additional setting that needs to be added or changed to get this codepath to honour the retry configuration?

asked 3 years ago2086 views
1 Answer
0

503 Slow Down occurs when you exceeds limits in your account for the S3 bucket/prefix at any given point in time. Your application can achieve at least 3,500 PUT/COPY/POST/DELETE or 5,500 GET/HEAD requests per second per prefix in a bucket.

Did you mean your spark application doesn't retry or it failed after 120 retries?

120 retries is definitely a big number and if it is failing after 120 retries it would mean there is sustained S3 API calls in your account for the bucket/prefix and in this case you need look at the options as described in AWS Knowledge Center Article

In addition, it would help if you increase the "fs.s3.retryPeriodSeconds" period as well.

Would recommend reaching out to AWS Support through the case management system with details (ClusterId, ApplicationId etc.) so that the team can look into the specifics of this error in your account.

AWS
SUPPORT ENGINEER
answered 3 years ago

You are not logged in. Log in to post an answer.

A good answer clearly answers the question and provides constructive feedback and encourages professional growth in the question asker.

Guidelines for Answering Questions