1 Answer
- Newest
- Most votes
- Most comments
0
You can do this with the latest version of the sagemaker sdk 2.89.0
from sagemaker.workflow.pipeline_context import PipelineSession
session = PipelineSession()
inputs = [
ProcessingInput(
source="s3://my-bucket/sourcefile",
destination="/opt/ml/processing/inputs/",),
]
processor = FrameworkProcessor(...)
step_args = processor.run(inputs=inputs, source_dir="...")
step_sklearn = ProcessingStep(
name="MyProcessingStep",
step_args=step_args,
)
answered 2 years ago
Relevant content
- asked 2 years ago
- asked 2 years ago
- asked 9 months ago
- AWS OFFICIALUpdated a month ago
- AWS OFFICIALUpdated 3 years ago
- AWS OFFICIALUpdated a month ago
- AWS OFFICIALUpdated a month ago
thank you!